Atomic Explosion Tests in Outer Space   Leave a comment


High-altitude nuclear explosions (HANE) have historically been nuclear explosions that take place above altitudes of 30 km, still inside the Earth’s atmosphere. Such explosions have been tests of nuclear weapons, used to determine the effects of the blast and radiation in the exoatmospheric environment. The highest was at an altitude of 540 km (335.5 mi).

The only nations to detonate nuclear weapons in outer space are the United States and the Soviet Union. The U.S. program began in 1958 with the Hardtack Teak and Hardtack Orange shots, both 3.8 megatons. These warheads were initially carried on Redstone rockets. Later tests were delivered by Thor missiles for Operation Fishbowl tests, and modified Lockheed X-17 missiles for the Argus tests. The purpose of the shots was to determine both feasibility of nuclear weapons as an anti-ballistic missile defense, as well as a means to defeat satellites and manned orbiting vehicles in space. High-altitude nuclear blasts produce significantly different effects. In the lower reaches of vacuous space, the resulting fireball grows much larger and faster than it does near the ground, and the radiation it emits travels much farther.

Talk about ultimate fireworks!


atomic test The Sky After the Starfish Prime Nuclear Test

Starfish Prime Atmospheric Nuclear Test as seen from 900 miles(1,650 kms)  away.


The strong electromagnetic pulse (EMP) that results has several components. In the first few tens of nanoseconds, about a tenth of a percent of the weapon yield appears as powerful gamma rays with energies of one to three mega-electron volts (MeV, a unit of energy). The gamma rays penetrate the atmosphere and collide with air molecules, depositing their energy to produce huge quantities of positive ions and recoil electrons (also known as Compton electrons). The impacts create MeV-energy Compton electrons that then accelerate and spiral along the Earth’s magnetic field lines. The resulting transient electric fields and currents that arise generate electromagnetic emissions in the radio frequency range of 15 to 250 megahertz (MHz, or one million cycles per second). This high-altitude EMP occurs between 30 and 50 kilometers (18 and 31 miles) above the Earth’s surface. The potential as an anti-satellite weapon became apparent in August 1958 during Hardtack Teak. The EMP observed at the Apia Observatory at Samoa was four times more powerful than any created by solar storms, while in July 1962 the Starfish Prime test damaged electronics in Honolulu and New Zealand (approximately 1,300 kilometers away), fused 300 street lights on Oahu (Hawaii), set off about 100 burglar alarms, and caused the failure of a microwave repeating station on Kauai, which cut off the sturdy telephone system from the other Hawaiian islands. The radius for an effective satellite kill for the various prompt radiations produced by such a nuclear weapon in space was determined to be roughly 80 km. Further testing to this end was carried out, and embodied in a Department of Defense program, Program 437.

There are problems with nuclear weapons carried over to testing and deployment scenarios, however. Because of the very large radius associated with nuclear events, it was nearly impossible to prevent indiscriminate damage to other satellites, including one’s own satellites. Starfish Prime produced an artificial radiation belt in space that soon destroyed three satellites (Ariel, TRAAC, and Transit 4B all failed after traversing the radiation belt, while Cosmos V, Injun I and Telstar 1 suffered minor degradation, due to some radiation damage to solar cells, etc.). The radiation dose rate was at least 60 rads/day at four months after Starfish for a well-shielded satellite or manned capsule in a polar circular earth orbit, which caused NASA concern with regard to its manned space exploration programs.


  • List of high-altitude nuclear explosions


  • United States USAHardtack I – Johnston Atoll, Pacific Ocean
  • Yucca 28 April 1958, 1.7 kt, 26.2 km
  • Teak, 1 August 1958, 3.8 Mt, 76.8 km
  • Orange, 12 August 1958, 3.8 Mt, 43 km
  • United States USAArgus – South Atlantic Ocean
    • Argus I, 27 August 1958, 1.7 kt, 200 km
    • Argus II, 30 August 1958, 1.7 kt, 240 km
    • Argus III, 6 September 1958, 1.7 kt, 540 km (The highest known man made nuclear explosion)

    Soviet Union USSR – 1961 tests – Kapustin Yar

    • Test #88, 6 September 1961, 10.5 kt, 22.7 km
    • Test #115, 6 October 1961, 40 kt, 41.3 km
    • Test #127, 27 October 1961, 1.2 kt, 150 km
    • Test #128, 27 October 1961, 1.2. kt, 300 km

    United States USADominic I – (Operation Fishbowl) – Johnston Atoll, Pacific Ocean

    • Bluegill, 3 June 1962, failed
    • Bluegill Prime, 25 July 1962, failed
    • Bluegill Double Prime, 15 October 1962, failed
    • Bluegill Triple Prime, 26 October 1962, 410 kt, 50 km
    • Starfish, 20 June 1962, failed
    • Starfish Prime, 9 July 1962, 1.4 Mt, 400 km (The largest man made nuclear explosion in outer space)
    • Checkmate, 20 October 1962, 7 kt, 147 km
    • Kingfish, 1 November 1962, 410 kt, 97 km

    Soviet Union USSR – Soviet Project K nuclear tests – Kapustin Yar

    • Test #184, 22 October 1962, 300 kt, 290 km
    • Test #187, 28 October 1962, 300 kt, 150 km
    • Test #195, 1 November 1962, 300 kt, 59 km



The Starfish Prime flash as seen through heavy cloud cover from Honolulu, 1,300 km away.




Posted January 24, 2016 by markosun in Uncategorized

Tagged with ,

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: